高三必備:高考數(shù)學(xué)常見易錯(cuò)點(diǎn)分析
2019-04-25 12:55:08網(wǎng)絡(luò)資源文章作者:高考網(wǎng)整理
高三必備:高考數(shù)學(xué)常見易錯(cuò)點(diǎn)分析
對(duì)于很多高考數(shù)學(xué)成績(jī)差的學(xué)生來說,學(xué)習(xí)高考數(shù)學(xué)就是一種折磨。下面有途網(wǎng)小編很大家分享了高考數(shù)學(xué)易錯(cuò)點(diǎn),歡迎閱讀。
經(jīng)典高考數(shù)學(xué)易錯(cuò)點(diǎn)
充分必要條件顛倒致誤
錯(cuò)因分析:對(duì)于兩個(gè)條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類高考數(shù)學(xué)問題時(shí)一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。
高考數(shù)學(xué)易混淆知識(shí)點(diǎn)
求函數(shù)定義域忽視細(xì)節(jié)致誤
錯(cuò)因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。
在求一般函數(shù)定義域時(shí)要注意下面幾點(diǎn):
(1)分母不為0;
(2)偶次被開放式非負(fù);
(3)真數(shù)大于0;
(4)0的0次冪沒有意義。
函數(shù)的定義域是非空的數(shù)集,在高考數(shù)學(xué)解決函數(shù)定義域時(shí)不要忘記了這點(diǎn)。對(duì)于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。
常見的高考數(shù)學(xué)易錯(cuò)點(diǎn)
邏輯聯(lián)結(jié)詞理解不準(zhǔn)致誤
錯(cuò)因分析:在判斷含邏輯聯(lián)結(jié)詞的命題時(shí)很容易因?yàn)槔斫獠粶?zhǔn)確而出現(xiàn)錯(cuò)誤,在這里我們給出一些常用的判斷方法,希望對(duì)大家有所幫助:
p∨q真<=>p真或q真,
p∨q假<=>p假且q假(概括為一真即真);
p∧q真<=>p真且q真,
p∧q假<=>p假或q假(概括為一假即假);
┐p真<=>p假,┐p假<=>p真(概括為一真一假)。
高考數(shù)學(xué)高分解題技巧
高考數(shù)學(xué)求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對(duì)式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法;
恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏;
圓錐曲線的高考數(shù)學(xué)題目?jī)?yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點(diǎn)有關(guān),選擇設(shè)而不求點(diǎn)差法,與弦的中點(diǎn)無關(guān),選擇韋達(dá)定理公式法;使用韋達(dá)定理必須先考慮是否為二次及根的判別式。