Image Modal
全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高中頻道 > 高一數(shù)學學習方法 > 高中數(shù)學基本思想方法有哪些

高中數(shù)學基本思想方法有哪些

2024-09-03 20:17:22網(wǎng)絡(luò)整理


高考

  數(shù)學思想,是指現(xiàn)實世界的空間形式和數(shù)量關(guān)系反映到人們的意識之中,經(jīng)過思維活動而產(chǎn)生的結(jié)果。數(shù)學思想是對數(shù)學事實與理論經(jīng)過概括后產(chǎn)生的本質(zhì)認識;基本數(shù)學思想則是體現(xiàn)或應該體現(xiàn)于基礎(chǔ)數(shù)學中的具有奠基性、總結(jié)性和最廣泛的數(shù)學思想,它們含有傳統(tǒng)數(shù)學思想的精華和現(xiàn)代數(shù)學思想的基本特征,并且是歷史地發(fā)展著的。通過數(shù)學思想的培養(yǎng),數(shù)學的能力才會有一個大幅度的提高。掌握數(shù)學思想,就是掌握數(shù)學的精髓。

  數(shù)學思想方法是對數(shù)學及規(guī)律的理性認識,是對數(shù)學知識的本質(zhì)認識,是數(shù)學認識過程中提煉上升的數(shù)學觀點方法。學生大腦中若不蘊含數(shù)學思想方法,會導致數(shù)學學習缺乏自主性,往往就成為離不開教師這個拐棍的被動學習者,學的數(shù)學知識不能用數(shù)學思想方法有效連接,支離破碎。所以,學生在數(shù)學學習中,大腦有了數(shù)學思想,學習才有方向?qū)б,心中有了明確方向,才能主動思考,才有利于對數(shù)學本質(zhì)的認識,才能知道如何去思考和解決問題。

  高中數(shù)學基本數(shù)學思想

  1.轉(zhuǎn)化與化歸思想:

  是把那些待解決或難解決的問題化歸到已有知識范圍內(nèi)可解問題的一種重要的基本數(shù)學思想.這種化歸應是等價轉(zhuǎn)化,即要求轉(zhuǎn)化過程中的前因后果應是充分必要的,這樣才能保證轉(zhuǎn)化后所得結(jié)果仍為原題的結(jié)果. 高中數(shù)學中新知識的學習過程,就是一個在已有知識和新概念的基礎(chǔ)上進行化歸的過程.因此,化歸思想在數(shù)學中無處不在. 化歸思想在解題教學中的的運用可概括為:化未知為已知,化難為易,化繁為簡.從而達到知識遷移使問題獲得解決.但若化歸不當也可能使問題的解決陷入困境. 例證

  2.邏輯劃分思想(即分類與整合思想):

  是當數(shù)學對象的本質(zhì)屬性在局部上有不同點而又不便化歸為單一本質(zhì)屬性的問題解決時,而根據(jù)其不同點選擇適當?shù)膭澐謽藴史诸惽蠼,并綜合得出答案的一種基本數(shù)學思想.但要注意按劃分標準所分各類間應滿足互相排斥,不重復,不遺漏,最簡潔的要求. 在解題教學中常用的劃分標準有:按定義劃分;按公式或定理的適用范圍劃分;按運算法則的適用條件范圍劃分;按函數(shù)性質(zhì)劃分;按圖形的位置和形狀的變化劃分;按結(jié)論可能出現(xiàn)的不同情況劃分等.需說明的是: 有些問題既可用分類思想求解又可運用化歸思想或數(shù)形結(jié)合思想等將其轉(zhuǎn)化到一個新的知識環(huán)境中去考慮,而避免分類求解.運用分類思想的關(guān)鍵是尋找引起分類的原因和找準劃分標準. 例證

  3. 函數(shù)與方程思想(即聯(lián)系思想或運動變化的思想):

  就是用運動和變化的觀點去分析研究具體問題中的數(shù)量關(guān)系,抽象其數(shù)量特征,建立函數(shù)關(guān)系式,利用函數(shù)或方程有關(guān)知識解決問題的一種重要的基本數(shù)學思想.

  4. 數(shù)形結(jié)合思想:

  將數(shù)學問題中抽象的數(shù)量關(guān)系表現(xiàn)為一定的幾何圖形的性質(zhì)(或位置關(guān)系);或者把幾何圖形的性質(zhì)(或位置關(guān)系)抽象為適當?shù)臄?shù)量關(guān)系,使抽象思維與形象思維結(jié)合起來,實現(xiàn)抽象的數(shù)量關(guān)系與直觀的具體形象的聯(lián)系和轉(zhuǎn)化,從而使隱蔽的條件明朗化,是化難為易,探索解題思維途徑的重要的基本數(shù)學思想.

  5. 整體思想:

  處理數(shù)學問題的著眼點或在整體或在局部.它是從整體角度出發(fā),分析條件與目標之間的結(jié)構(gòu)關(guān)系,對應關(guān)系,相互聯(lián)系及變化規(guī)律,從而找出最優(yōu)解題途徑的重要的數(shù)學思想.它是控制論,信息論,系統(tǒng)論中“整體—部分—整體”原則在數(shù)學中的體現(xiàn).在解題中,為了便于掌握和運用整體思想,可將這一思想概括為:記住已知(用過哪些條件?還有哪些條件未用上?如何創(chuàng)造機會把未用上的條件用上?),想著目標(向著目標步步推理,必要時可利用圖形標示出已知和求證);看聯(lián)系,抓變化,或化歸;或數(shù)形轉(zhuǎn)換,尋求解答.一般來說,整體范圍看得越大,解法可能越好.

  在整體思想指導下,解題技巧只需記住已知,想著目標, 步步正確推理就夠了.

  中學數(shù)學中還有一些數(shù)學思想,如:

  集合的思想;

  補集思想;

  歸納與遞推思想;

  對稱思想;

  逆反思想;

  類比思想;

  參變數(shù)思想

  有限與無限的思想;

  特殊與一般的思想.

  它們大多是本文所述基本數(shù)學思想在一定知識環(huán)境中的具體體現(xiàn).所以在中學數(shù)學中,只要掌握數(shù)學基礎(chǔ)知識,把握代數(shù),三角,立體幾何,解析幾何的每部分的知識點及聯(lián)系,掌握幾個常用的基本數(shù)學思想和將它們統(tǒng)一起來的整體思想,就定能找到解題途徑.提高數(shù)學解題能力。

相關(guān)推薦:

       高一數(shù)學學習方法匯總

 

最新高考資訊、高考政策、考前準備、志愿填報、錄取分數(shù)線等

高考時間線的全部重要節(jié)點

盡在"高考網(wǎng)"微信公眾號

[標簽:高一數(shù)學 數(shù)學學習方法 數(shù)學成績]

分享:

高考院校庫(挑大學·選專業(yè),一步到位!)

高考院校庫(挑大學·選專業(yè),一步到位。

高校分數(shù)線

專業(yè)分數(shù)線

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:gaokao_com

  • 高考


高考關(guān)鍵詞