老師支招:考場上數學增分的技巧
2013-05-31 16:04:12呂迎春老師教你填志愿博客
無論文科考生,還是理科考生,數學是高考拉開分數的最主要學科。高分的同學130、140,低分的同學40、50,又由于數學是一門講理的學科,具有很強的邏輯性和推理性,講究層層推導,一個地方卡住,就做不下去,因此很多考生在數學上飲恨考場。
數學高考的特點是以學生解題能力的高低為標準的一次性選拔,這就使得臨場發(fā)揮顯得尤為重要。以下幾種題型的解法可供參考:
1.選擇題的解法
方法多樣,不擇手段。高考試題凸現能力,小題一般要小做,除直接法解答外,還要注意巧解,善于使用數形結合、特值(含特殊值、特殊位置、特殊圖形、特殊角度、特殊體等等)、排除、驗證、轉化、分析、估算等方法,一旦思路清晰,就迅速作答。不要在一兩個小題上糾纏,如果確實沒有思路,可先蒙一個,并做標記,即使是“蒙”也有25%的勝率,后面有時間的話再做。
2.填空題的解法
由于填空題和選擇題有相似之處,所以有些解題方法、策略是可以共用的。填空題要認真運算,表達結果必須數值準確、形式規(guī)范,否則將前功盡棄,因為填空題無過程分。
3.解答題——“步步為營”
數學中考閱卷評分實行懂多少知識給多少分的評分辦法,叫做“分段評分”或者“踩點給分”——踩上知識點就得分,踩得多就多得分。而考生“分段得分”的基本策略是:會做的題目力求不失分,部分理解的題目力爭多得分,能分布做的一定不列綜合式,解答過程中,該展示的推理過程和步驟決不省略,一個題目不能完整做出也要盡可能得分。會做的題目若不注意準確表達和規(guī)范書寫,常常會被“分段扣分”。
對于會做的題目,要解決“會而不對,對而不全”這個老大難問題。有的考生拿到題目,明明會做,但最終答案卻是錯的———會而不對。有的考生答案雖然對,但中間有邏輯缺陷或概念錯誤,或缺少關鍵步驟———對而不全。因此,會做的題目要特別注意表達的準確、考慮的周密、書寫的規(guī)范、語言的科學,防止被“分段扣分”。
對絕大多數考生來說,更為重要的是如何從拿不下來的題目中分段得點分。我們說,有什么樣的解題策略,就有什么樣的得分策略。把你解題的真實過程原原本本寫出來,就是“分段得分”的全部秘密。
、偃辈浇獯穑喝绻龅揭粋很困難的問題,確實啃不動,一個聰明的解題策略是,將它們分解為一系列的步驟,或者是一個個小問題,先解決問題的一部分,能解決多少就解決多少,能演算幾步就寫幾步,尚未成功不等于失敗。特別是那些解題層次明顯的題目,或者是已經程序化了的方法,每一步得分點的演算都可以得分,最后結論雖然未得出,但分數卻已過半,這叫“大題拿小分”。
、谔酱痤}:解題過程卡在某一過渡環(huán)節(jié)上是常見的。這時,我們可以先承認中間結論,往后推,看能否得到結論。如果不能,說明這個途徑不對,立即改變方向;如果能得出預期結論,就回過頭來,集中力量攻克這一“卡殼處”。由于考試時間的限制,“卡殼處”的攻克如果來不及了,就可以把前面的寫下來,再寫出“證實某步之后,繼續(xù)有……”一直做到底。也許,后來中間步驟又想出來,這時不要亂七八糟插上去,可補在后面。若題目有兩問,第一問想不出來,可把第一問作“已知”,先做第二問,這也是跳步解答。
、弁瞬浇獯穑“以退求進”是一個重要的解題策略。如果你不能解決所提出的問題,那么,你可以從一般退到特殊,從抽象退到具體,從復雜退到簡單,從整體退到部分,從較強的結論退到較弱的結論?傊,退到一個你能夠解決的問題。為了不產生“以偏概全”的誤解,應開門見山寫上“本題分幾種情況”。這樣,還會為尋找正確的、一般性的解法提供有意義的啟發(fā)。
④輔助解答:一道題目的完整解答,既有主要的實質性的步驟,也有次要的輔助性的步驟。實質性的步驟未找到之前,找輔助性的步驟是明智之舉。如:準確作圖,把題目中的條件翻譯成數學表達式,設應用題的未知數等。答卷中要做到穩(wěn)扎穩(wěn)打,字字有據,步步準確,盡量一次成功,提高成功率。
相關閱讀