全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號(hào)

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高考總復(fù)習(xí) > 高考數(shù)學(xué)復(fù)習(xí)方法 > 高二數(shù)學(xué)不等式知識(shí)點(diǎn)總結(jié)高中數(shù)學(xué)不等式知識(shí)點(diǎn)

高二數(shù)學(xué)不等式知識(shí)點(diǎn)總結(jié)高中數(shù)學(xué)不等式知識(shí)點(diǎn)

2019-01-08 20:00:44三好網(wǎng)

  高中數(shù)學(xué)不等式知識(shí)點(diǎn)一般地,用純粹的大于號(hào)“>”、小于號(hào)“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))“≥”、不大于號(hào)(小于或等于號(hào))“≤”連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式?偟膩碚f,用不等號(hào)(<,>,≥,≤,≠)連接的式子叫做不等式。

  高中數(shù)學(xué)不等式知識(shí)點(diǎn)總結(jié):

  1.用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。

  2.性質(zhì):

 、偃绻鹸>y,那么yy;(對(duì)稱性)

  ②如果x>y,y>z;那么x>z;(傳遞性)

  ③如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法原則,或叫同向不等式可加性)

 、 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

  ⑤如果x>y,m>n,那么x+m>y+n;(充分不必要條件)

 、奕绻鹸>y>0,m>n>0,那么xm>yn;

  ⑦如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù)),x的n次冪;蛘哒f,不等式的基本性質(zhì)有:

 、賹(duì)稱性;

 、趥鬟f性;

 、奂臃▎握{(diào)性,即同向不等式可加性;

 、艹朔▎握{(diào)性;

 、萃蛘挡坏仁娇沙诵;

  ⑥正值不等式可乘方;

 、哒挡坏仁娇砷_方;

 、嗟箶(shù)法則。

  3.分類:

 、僖辉淮尾坏仁剑鹤笥覂蛇叾际钦,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

 、谝辉淮尾坏仁浇M:

  a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。

  b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。

  4.不等式考點(diǎn):

 、俳庖辉淮尾坏仁(組)

  ②根據(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡單實(shí)際問題

 、塾脭(shù)軸表示一元一次不等式(組)的解集

  注:不等式兩邊相加或相減同一個(gè)數(shù)或式子,不等號(hào)的方向不變。(移項(xiàng)要變號(hào))

  不等式兩邊相乘或相除同一個(gè)正數(shù),不等號(hào)的方向不變。(相當(dāng)系數(shù)化1,這是得正數(shù)才能使用)

  不等式兩邊乘或除以同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。(÷或×1個(gè)負(fù)數(shù)的時(shí)候要變號(hào))

[標(biāo)簽:高考復(fù)習(xí) 高考資訊]

分享:

高考院校庫(挑大學(xué)·選專業(yè),一步到位。

高考院校庫(挑大學(xué)·選專業(yè),一步到位。

高校分?jǐn)?shù)線

專業(yè)分?jǐn)?shù)線

日期查詢
  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:gaokao_com

  • 👇掃描免費(fèi)領(lǐng)
    近十年高考真題匯總
    備考、選科和專業(yè)解讀
    關(guān)注高考網(wǎng)官方服務(wù)號(hào)