Image Modal
全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關注高考網公眾號

    (www_gaokao_com)
    了解更多高考資訊

您現在的位置:首頁 > 高考資源網 > 高中教案 > 高三數學教案 > 高三數學教案十五

電子課本

高考真題

高考模擬題

高中試卷

高中課件

高中教案

高三數學教案十五

來源:網絡整理 2024-12-08 20:49:27


高考

  高三這年,其重要性,是不言而喻的。高考網陸續(xù)的整理了一些全國各省市優(yōu)秀教案供廣大考生參考。

  內容提要:本文把常見的排列問題歸納成三種典型問題,并在排列的一般規(guī)定性下,對每一種類型的問題通過典型例題歸納出相應的解決方案,并附以近年的高考原題及解析,使我們對排列問題的認識更深入本質,對排列問題的解決更有章法可尋。

  關鍵詞: 特殊優(yōu)先,大元素,捆綁法,插空法,等機率法

  排列問題的應用題是學生學習的難點,也是高考的必考內容,筆者在教學中嘗試將排列

  問題歸納為三種類型來解決:

  下面就每一種題型結合例題總結其特點和解法,并附以近年的高考原題供讀者參研。

  一、能排不能排排列問題(即特殊元素在特殊位置上有特別要求的排列問題)

  解決此類問題的關鍵是特殊元素或特殊位置優(yōu)先;蚴褂瞄g接法。

  例1:(1)7位同學站成一排,其中甲站在中間的位置,共有多少種不同的排法?

  (2)7位同學站成一排,甲、乙只能站在兩端的排法共有多少種?

  (3)7位同學站成一排,甲、乙不能站在排頭和排尾的排法共有多少種?

 。4)7位同學站成一排,其中甲不能在排頭、乙不能站排尾的排法共有多少種?

  解析:

 。1)先考慮甲站在中間有1種方法,再在余下的6個位置排另外6位同學,共 種方法;

 。2)先考慮甲、乙站在兩端的排法有 種,再在余下的5個位置排另外5位同學的排法有 種,共 種方法;

  (3) 先考慮在除兩端外的5個位置選2個安排甲、乙有 種,再在余下的5個位置排另外5位同學排法有 種,共 種方法;本題也可考慮特殊位置優(yōu)先,即兩端的排法有 ,中間5個位置有 種,共 種方法;

 。4)分兩類乙站在排頭和乙不站在排頭,乙站在排頭的排法共有 種,乙不站在排頭的排法總數為:先在除甲、乙外的5人中選1人安排在排頭的方法有 種,中間5個位置選1個安排乙的方法有 ,再在余下的5個位置排另外5位同學的排法有 ,故共有 種方法;本題也可考慮間接法,總排法為 ,不符合條件的甲在排頭和乙站排尾的排法均為 ,但這兩種情況均包含了甲在排頭和乙站排尾的情況,故共有 種。

  例2。某天課表共六節(jié)課,要排政治、語文、數學、物理、化學、體育共六門課程,如果第一節(jié)不排體育,最后一節(jié)不排數學,共有多少種不同的排課方法?

  解法1:對特殊元素數學和體育進行分類解決

 。1)數學、體育均不排在第一節(jié)和第六節(jié),有 種,其他有 種,共有 種;

  (2)數學排在第一節(jié)、體育排在第六節(jié)有一種,其他有 種,共有 種;

 。3)數學排在第一節(jié)、體育不在第六節(jié)有 種,其他有 種,共有 種;

 。4)數學不排在第一節(jié)、體育排在第六節(jié)有 種,其他有 種,共有 種;

  所以符合條件的排法共有 種

  解法2:對特殊位置第一節(jié)和第六節(jié)進行分類解決

  (1)第一節(jié)和第六節(jié)均不排數學、體育有 種,其他有 種,共有 種;

 。2)第一節(jié)排數學、第六節(jié)排體育有一種,其他有 種,共有 種;

 。3)第一節(jié)排數學、第六節(jié)不排體育有 種,其他有 種,共有 種;

  (4)第一節(jié)不排數學、第六節(jié)排體育有 種,其他有 種,共有 種;

  所以符合條件的排法共有 種。

  解法3:本題也可采用間接排除法解決

  不考慮任何限制條件共有 種排法,不符合題目要求的排法有:(1)數學排在第六節(jié)有 種;(2)體育排在第一節(jié)有 種;考慮到這兩種情況均包含了數學排在第六節(jié)和體育排在第一節(jié)的情況 種所以符合條件的排法共有 種

  附:

  1、(20xx北京卷)五個工程隊承建某項工程的五個不同的子項目,每個工程隊承建1項,其中甲工程隊不能承建1號子項目,則不同的承建方案共有( )

 。ˋ) 種 (B) 種 (C) 種 (D) 種

  解析:本題在解答時將五個不同的子項目理解為5個位置,五個工程隊相當于5個不同的元素,這時問題可歸結為能排不能排排列問題(即特殊元素在特殊位置上有特別要求的排列問題),先排甲工程隊有 ,其它4個元素在4個位置上的排法為 種,總方案為 種。故選(B)。

  2、(20xx全國卷Ⅱ)在由數字0,1,2,3,4,5所組成的沒有重復數字的四位數中,不能被5整除的數共有 個。

  解析:本題在解答時只須考慮個位和千位這兩個特殊位置的限制,個位為1、2、3、4中的某一個有4種方法,千位在余下的4個非0數中選擇也有4種方法,十位和百位方法數為 種,故方法總數為 種。

  3、(20xx福建卷)從6人中選出4人分別到巴黎、倫敦、悉尼、莫斯科四個城市游覽,要求每個城市有一人游覽,每人只游覽一個城市,且這6人中甲、乙兩人不去巴黎游覽,則不同的選擇方案共有 ( )

  A、300種 B、240種 C、144種 D、96種

  解析:本題在解答時只須考慮巴黎這個特殊位置的要求有4種方法,其他3個城市的排法看作標有這3個城市的3個簽在5個位置(5個人)中的排列有 種,故方法總數為 種。故選(B)。

  上述問題歸結為能排不能排排列問題,從特殊元素和特殊位置入手解決,抓住了問題的本質,使問題清晰明了,解決起來順暢自然。

  二、相鄰不相鄰排列問題(即某兩或某些元素不能相鄰的排列問題)

  相鄰排列問題一般采用大元素法,即將相鄰的元素捆綁作為一個元素,再與其他元素進行排列,解答時注意釋放大元素,也叫捆綁法。不相鄰排列問題(即某兩或某些元素不能相鄰的排列問題)一般采用插空法。

  例3:7位同學站成一排,(1)甲、乙和丙三同學必須相鄰的排法共有多少種?

 。2)甲、乙和丙三名同學都不能相鄰的排法共有多少種?

  (3)甲、乙兩同學間恰好間隔2人的排法共有多少種?

  解析:

 。1)第一步、將甲、乙和丙三人捆綁成一個大元素與另外4人的排列為 種,第二步、釋放大元素,即甲、乙和丙在捆綁成的大元素內的排法有 種,所以共 種;

 。2)第一步、先排除甲、乙和丙之外4人共 種方法,第二步、甲、乙和丙三人排在4人排好后產生的5個空擋中的任何3個都符合要求,排法有 種,所以共有 種;(3)先排甲、乙,有 種排法,甲、乙兩人中間插入的2人是從其余5人中選,有 種排法,將已經排好的4人當作一個大元素作為新人參加下一輪4人組的排列,有 種排法,所以總的排法共有 種。

  附:1、(20xx遼寧卷)用1、2、3、4、5、6、7、8組成沒有重復數字的八位數,要求1和2相鄰,3與4相鄰,5與6相鄰,而7與8不相鄰,這樣的八位數共有 個。(用數字作答)

  解析:第一步、將1和2捆綁成一個大元素,3和4捆綁成一個大元素,5和6捆綁成一個大元素,第二步、排列這三個大元素,第三步、在這三個大元素排好后產生的4個空擋中的任何2個排列7和8,第四步、釋放每個大元素(即大元素內的每個小元素在捆綁成的大元素內部排列),所以共有 個數。

  2、 (20xx。 重慶理)某校高三年級舉行一次演講賽共有10位同學參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學恰

  好被排在一起(指演講序號相連),而二班的2位同學沒有被排在一起的概率為 ( )

  A、B、C、D。

  解析:符合要求的基本事件(排法)共有:第一步、將一班的3位同學捆綁成一個大元素,第二步、這個大元素與其它班的5位同學共6個元素的全排列,第三步、在這個大元素與其它班的`5位同學共6個元素的全排列排好后產生的7個空擋中排列二班的2位同學,第四步、釋放一班的3位同學捆綁成的大元素,所以共有 個;而基本事件總數為 個,所以符合條件的概率為 。故選( B )。

  3、(20xx京春理)某班新年聯歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目。如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數為( )

  A、42 B、30 C、20 D、12

  解析:分兩類:增加的兩個新節(jié)目不相鄰和相鄰,兩個新節(jié)目不相鄰采用插空法,在5個節(jié)目產生的6個空擋排列共有 種,將兩個新節(jié)目捆綁作為一個元素叉入5個節(jié)目產生的6個空擋中的一個位置,再釋放兩個新節(jié)目 捆綁成的大元素,共有 種,再將兩類方法數相加得42種方法。故選( A )。

  三、機會均等排列問題(即某兩或某些元素按特定的方式或順序排列的排列問題)

  解決機會均等排列問題通常是先對所有元素進行全排列,再借助等可能轉化,即乘以符合要求的某兩(或某些)元素按特定的方式或順序排列的排法占它們(某兩(或某些)元素)全排列的比例,稱為等機率法或將特定順序的排列問題理解為組合問題加以解決。

  例4、 7位同學站成一排。

  (1)甲必須站在乙的左邊?

 。2)甲、乙和丙三個同學由左到右排列?

  解析:

 。1)7位同學站成一排總的排法共 種,包括甲、乙在內的7位同學排隊只有甲站在乙的左邊和甲站在乙的右邊兩類,它們的機會是均等的,故滿足要求的排法為 ,本題也可將特定順序的排列問題理解為組合問題加以解決,即先在7個位置中選出2個位置安排甲、乙, 由于甲在乙的左邊共有 種,再將其余5人在余下的5個位置排列有 種,得排法數為 種;

 。2)參見(1)的分析得 (或 )。

  本文通過較為清晰的脈絡把排列問題分為三種類型,使我們對排列問題有了比較系統(tǒng)的認識。但由于排列問題種類繁多,總會有些問題不能囊括其中,也一定存在許多不足,希望讀者能和我一起研究完善。

       相關推薦:


  高三數學教案匯總


  高三數學一輪復習教案:《集合及其基本運算》

 

最新高考資訊、高考政策、考前準備、志愿填報、錄取分數線等

高考時間線的全部重要節(jié)點

盡在"高考網"微信公眾號

收藏

高考院校庫(挑大學·選專業(yè),一步到位。

高校分數線

專業(yè)分數線

京ICP備10033062號-2 北京市公安局海淀分局備案編號:1101081950

違法和不良信息舉報電話:010-56762110     舉報郵箱:wzjubao@tal.com

高考網版權所有 Copyright © 2005-2022 0v2773b.cn . All Rights Reserved

知識商店