高三數(shù)學教案二十一
來源:網(wǎng)絡整理 2024-12-08 20:52:42
高三這年,其重要性,是不言而喻的。高考網(wǎng)陸續(xù)的整理了一些全國各省市優(yōu)秀教案供廣大考生參考。
一、課前檢測
1.在數(shù)列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求數(shù)列{bn}的前n項的和.
解:由已知得:an=1n+1(1+2+3++n)=n2,bn=2n2n+12=8(1n-1n+1) 數(shù)列{bn}的前n項和為
Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1.
2.已知在各項不為零的數(shù)列 中, 。
(1)求數(shù)列 的通項;
(2)若數(shù)列 滿足 ,數(shù)列 的前 項的和為 ,求
解:(1)依題意, ,故可將 整理得:
所以 即
,上式也成立,所以
(2)
二、知識梳理
(一)前n項和公式Sn的'定義:Sn=a1+a2+an。
(二)數(shù)列求和的方法(共8種)
5.錯位相減法:適用于差比數(shù)列(如果 等差, 等比,那么 叫做差比數(shù)列)即把每一項都乘以 的公比 ,向后錯一項,再對應同次項相減,轉化為等比數(shù)列求和。
如:等比數(shù)列的前n項和就是用此法推導的.
解讀:
6.累加(乘)法
解讀:
7.并項求和法:一個數(shù)列的前n項和中,可兩兩結合求解,則稱之為并項求和.
形如an=(-1)nf(n)類型,可采用兩項合并求。
解讀:
8.其它方法:歸納、猜想、證明;周期數(shù)列的求和等等。
解讀:
三、典型例題分析
題型1 錯位相減法
例1 求數(shù)列 前n項的和.
解:由題可知{ }的通項是等差數(shù)列{2n}的通項與等比數(shù)列{ }的通項之積
設 ①
、 (設制錯位)
、-②得 (錯位相減)
變式訓練1 (2010昌平模擬)設數(shù)列{an}滿足a1+3a2+32a3++3n-1an=n3,nN*.
(1)求數(shù)列{an}的通項公式;
(2)設bn=nan,求數(shù)列{bn}的前n項和Sn.
解:(1)∵a1+3a2+32a3++3n-1an=n3, ①
當n2時,a1+3a2+32a3++3n-2an-1=n-13. ②
①-②得3n-1an=13,an=13n.
在①中,令n=1,得a1=13,適合an=13n, an=13n.
(2)∵bn=nan,bn=n3n.
Sn=3+232+333++n 3n, ③
3Sn=32+233+334++n 3n+1. ④
、-③得2Sn=n 3n+1-(3+32+33++3n),即2Sn=n 3n+1-3(1-3n)1-3, Sn=(2n-1)3n+14+34.
小結與拓展:
題型2 并項求和法
例2 求 =1002-992+982-972++22-12
解: =1002-992+982-972++22-12=(100+ 99)+(98+97)++(2+1)=5050.
變式訓練2 數(shù)列{(-1)nn}的前2010項的和S2 010為( D )
A.-2010 B.-1005 C.2010 D.1005
解:S2 010=-1+2-3+4-5++2 008-2 009+2 010
=(2-1)+(4-3)+(6-5)++(2 010-2 009)=1 005.
小結與拓展:
題型3 累加(乘)法及其它方法:歸納、猜想、證明;周期數(shù)列的求和等等
例3 (1)求 之和.
(2)已知各項均為正數(shù)的數(shù)列{an}的前n項的乘積等于Tn= (nN*),,則數(shù)列{bn}的前n項和Sn中最大的一項是( D )
A.S6 B.S5 C.S4 D.S3
解:(1)由于 (找通項及特征)
= (分組求和)= =
=
(2)D.
變式訓練3 (1)(2009福州八中)已知數(shù)列 則 , 。答案:100. 5000。
(2)數(shù)列 中, ,且 ,則前2010項的和等于( A )
A.1005 B.2010 C.1 D.0
小結與拓展:
四、歸納與總結(以學生為主,師生共同完成)
以上一個8種方法雖然各有其特點,但總的原則是要善于改變原數(shù)列的形式結構,使其能進行消項處理或能使用等差數(shù)列或等比數(shù)列的求和公式以及其它已知的基本求和公式來解決,只要很好地把握這一規(guī)律,就能使數(shù)列求和化難為易,迎刃而解。
相關推薦:
最新高考資訊、高考政策、考前準備、志愿填報、錄取分數(shù)線等
高考時間線的全部重要節(jié)點
盡在"高考網(wǎng)"微信公眾號
相關推薦
高考院校庫(挑大學·選專業(yè),一步到位。
高校分數(shù)線
專業(yè)分數(shù)線
- 日期查詢