Image Modal
全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關注高考網公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高考總復習 > 高考數學復習方法 > 高考倒計時21天:高考數學答題方法19條鐵律(2)

高考倒計時21天:高考數學答題方法19條鐵律(2)

2016-05-17 10:01:05新浪教育


高考


  16。注意概率分布中的二項分布,二項式定理中的通項公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點能否取到需單獨驗證,用點斜式或斜截式方程的時候考慮斜率是否存在等;

  17。絕對值問題優(yōu)先選擇去絕對值,去絕對值優(yōu)先選擇使用定義;

  18。與平移有關的,注意口訣“左加右減,上加下減”只用于函數,沿向量平移一定要使用平移公式完成;

  19。關于中心對稱問題,只需使用中點坐標公式就可以,關于軸對稱問題,注意兩個等式的運用:一是垂直,一是中點在對稱軸上。

  高考數學答題思路

  在高考時很多同學往往因為時間不夠導致數學試卷不能寫完,試卷得分不高,掌握解題思想可以幫助同學們快速找到解題思路,節(jié)約思考時間。以下總結高考數學五大解題思想,幫助同學們更好地提分。

  1、函數與方程思想

  函數思想是指運用運動變化的觀點,分析和研究數學中的數量關系,通過建立函數關系運用函數的圖像和性質去分析問題、轉化問題和解決問題;方程思想,是從問題的數量關系入手,運用數學語言將問題轉化為方程或不等式模型去解決問題。同學們在解題時可利用轉化思想進行函數與方程間的相互轉化。

  2、數形結合思想

  中學數學研究的對象可分為兩大部分,一部分是數,一部分是形,但數與形是有聯系的,這個聯系稱之為數形結合或形數結合。它既是尋找問題解決切入點的“法寶”,又是優(yōu)化解題途徑的“良方”,因此建議同學們在解答數學題時,能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。

  3、特殊與一般的思想

  用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據這一點,同學們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。

  4、極限思想解題步驟

  極限思想解決問題的一般步驟為:一、對于所求的未知量,先設法構思一個與它有關的變量;二、確認這變量通過無限過程的結果就是所求的未知量;三、構造函數(數列)并利用極限計算法則得出結果或利用圖形的極限位置直接計算結果。

  5、分類討論思想

  同學們在解題時常常會遇到這樣一種情況,解到某一步之后,不能再以統一的方法、統一的式子繼續(xù)進行下去,這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數學概念本身具有多種情形,數學運算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。建議同學們在分類討論解題時,要做到標準統一,不重不漏。

  掌握數學解題思想是解答數學題時不可缺少的一步,建議同學們在做題型訓練之前先了解數學解題思想,掌握解題技巧,并將做過的題目加以劃分,以便在高考前一個月集中復習。

[標簽:高考復習 數學復習 高考數學復習]

分享:

高考院校庫(挑大學·選專業(yè),一步到位。

  • 歡迎掃描二維碼
    關注高考網微信
    ID:gaokao_com

  • 高考


高考關鍵詞