Image Modal
全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

您現(xiàn)在的位置:首頁 > 高考總復習 > 高考知識點 > 高考數(shù)學知識點 > 重心是什么的交點有啥性質(zhì)

重心是什么的交點有啥性質(zhì)

來源:網(wǎng)絡整理 2020-09-06 13:17:59

  重心是三角形三邊中線的交點。重心到頂點的距離與重心到對邊中點的距離之比為2:1,重心和三角形3個頂點組成的3個三角形面積相等,重心到三角形3個頂點距離的平方和最小。

  1三角形重心定義及性質(zhì)證明

  三角形重心是三角形三中線的交點。當幾何體為勻質(zhì)物體且重力場均勻時,重心與該形中心重合。

  證明一

  1、重心到頂點的距離與重心到對邊中點的距離之比為2:1。

  例:已知:△ABC,E、F是AB,AC的中點。EC、FB交于G。

  求證:EG=1/2CG

  證明:過E作EH∥BF交AC于H。

  ∵AE=BE,EH//BF

  ∴AH=HF=1/2AF(平行線分線段成比例定理)

  又∵ AF=CF

  ∴HF=1/2CF

  ∴HF:CF=1/2

  ∵EH∥BF

  ∴EG:CG=HF:CF=1/2

  ∴EG=1/2CG

  方法二 連接EF

  利用三角形相似

  求證:EG=1/2CG 即證明EF=1/2BC

  利用中位線可證明EF=1/2BC利用中位線可證明EF=1/2BC

  2、重心和三角形3個頂點組成的3個三角形面積相等。

  證明方法:

  在△ABC內(nèi),三邊為a,b,c,點O是該三角形的重心,AOA'、BOB'、COC'分別為a、b、c邊上的中線。根據(jù)重心性質(zhì)知:

  OA'=1/3AA'

  OB'=1/3BB'

  OC'=1/3CC'

  過O,A分別作a邊上高OH',AH

  可知OH'=1/3AH

  則,S△BOC=1/2×OH'a=1/2×1/3AHa=1/3S△ABC

  同理可證S△AOC=1/3S△ABC

  S△AOB=1/3S△ABC

  所以,S△BOC=S△AOC=S△AOB

最新高考資訊、高考政策、考前準備、志愿填報、錄取分數(shù)線等

  高考時間線的全部重要節(jié)點

  盡在"高考網(wǎng)"微信公眾號

收藏

高考院校庫(挑大學·選專業(yè),一步到位!)

高校分數(shù)線

專業(yè)分數(shù)線

京ICP備10033062號-2 北京市公安局海淀分局備案編號:1101081950

違法和不良信息舉報電話:010-56762110     舉報郵箱:wzjubao@tal.com

高考網(wǎng)版權(quán)所有 Copyright © 2005-2022 0v2773b.cn . All Rights Reserved